\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\) [1141]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 372 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (8 A b^2-10 a b B+3 a^2 (3 A+5 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^4 d}-\frac {2 \sqrt {a+b} \left (8 A b^2-2 a b (A+5 B)+a^2 (9 A-5 B+15 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^3 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2 (4 A b-5 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*A*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a/d/cos(d*x+c)^(5/2)-2/15*(4*A*b-5*B*a)*sin(d*x+c)*(a+b*cos(d*x+c))^(1
/2)/a^2/d/cos(d*x+c)^(3/2)+2/15*(a-b)*(8*A*b^2-10*B*a*b+3*a^2*(3*A+5*C))*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))
^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec
(d*x+c))/(a-b))^(1/2)/a^4/d-2/15*(8*A*b^2-2*a*b*(A+5*B)+a^2*(9*A-5*B+15*C))*cot(d*x+c)*EllipticF((a+b*cos(d*x+
c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+
sec(d*x+c))/(a-b))^(1/2)/a^3/d

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 372, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {3134, 3077, 2895, 3073} \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=-\frac {2 (4 A b-5 a B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \left (3 a^2 (3 A+5 C)-10 a b B+8 A b^2\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{15 a^4 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \left (a^2 (9 A-5 B+15 C)-2 a b (A+5 B)+8 A b^2\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{15 a^3 d}+\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(8*A*b^2 - 10*a*b*B + 3*a^2*(3*A + 5*C))*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c
 + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(
1 + Sec[c + d*x]))/(a - b)])/(15*a^4*d) - (2*Sqrt[a + b]*(8*A*b^2 - 2*a*b*(A + 5*B) + a^2*(9*A - 5*B + 15*C))*
Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*
Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(15*a^3*d) + (2*A*Sqrt[a + b*Cos[c
+ d*x]]*Sin[c + d*x])/(5*a*d*Cos[c + d*x]^(5/2)) - (2*(4*A*b - 5*a*B)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(
15*a^2*d*Cos[c + d*x]^(3/2))

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \int \frac {\frac {1}{2} (-4 A b+5 a B)+\frac {1}{2} a (3 A+5 C) \cos (c+d x)+A b \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{5 a} \\ & = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2 (4 A b-5 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 \int \frac {\frac {1}{4} \left (8 A b^2-10 a b B+3 a^2 (3 A+5 C)\right )+\frac {1}{4} a (2 A b+5 a B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{15 a^2} \\ & = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2 (4 A b-5 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {\left (8 A b^2-10 a b B+3 a^2 (3 A+5 C)\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{15 a^2}-\frac {\left (8 A b^2-2 a b (A+5 B)+a^2 (9 A-5 B+15 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{15 a^2} \\ & = \frac {2 (a-b) \sqrt {a+b} \left (8 A b^2-10 a b B+3 a^2 (3 A+5 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^4 d}-\frac {2 \sqrt {a+b} \left (8 A b^2-2 a b (A+5 B)+a^2 (9 A-5 B+15 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^3 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2 (4 A b-5 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 7.18 (sec) , antiderivative size = 1351, normalized size of antiderivative = 3.63 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=-\frac {-\frac {4 a \left (7 a^2 A b+8 A b^3-5 a^3 B-10 a b^2 B+15 a^2 b C\right ) \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-4 a \left (9 a^3 A+8 a A b^2-10 a^2 b B+15 a^3 C\right ) \left (\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )+2 \left (9 a^2 A b+8 A b^3-10 a b^2 B+15 a^2 b C\right ) \left (\frac {i \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {a+b \cos (c+d x)} E\left (i \text {arcsinh}\left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )|-\frac {2 a}{-a-b}\right ) \sec (c+d x)}{b \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {\frac {(a+b \cos (c+d x)) \sec (c+d x)}{a+b}}}+\frac {2 a \left (\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )}{b}+\frac {\sqrt {a+b \cos (c+d x)} \sin (c+d x)}{b \sqrt {\cos (c+d x)}}\right )}{15 a^3 d}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \left (\frac {2 \sec ^2(c+d x) (-4 A b \sin (c+d x)+5 a B \sin (c+d x))}{15 a^2}+\frac {2 \sec (c+d x) \left (9 a^2 A \sin (c+d x)+8 A b^2 \sin (c+d x)-10 a b B \sin (c+d x)+15 a^2 C \sin (c+d x)\right )}{15 a^3}+\frac {2 A \sec ^2(c+d x) \tan (c+d x)}{5 a}\right )}{d} \]

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

-1/15*((-4*a*(7*a^2*A*b + 8*A*b^3 - 5*a^3*B - 10*a*b^2*B + 15*a^2*b*C)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a +
 b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Cs
c[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(
c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(9*a^3*A + 8*a*A*b^2 - 10*a^2*b*B +
 15*a^3*C)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*
Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc
[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[
c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]
*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c +
 d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*
Cos[c + d*x]])) + 2*(9*a^2*A*b + 8*A*b^3 - 10*a*b^2*B + 15*a^2*b*C)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*
x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c +
d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Cot[(c + d
*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d
*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/
(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b)*Cot[(c
+ d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c
+ d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[
2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqrt[a + b*Co
s[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d*x]])))/(a^3*d) + (Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*((2*
Sec[c + d*x]^2*(-4*A*b*Sin[c + d*x] + 5*a*B*Sin[c + d*x]))/(15*a^2) + (2*Sec[c + d*x]*(9*a^2*A*Sin[c + d*x] +
8*A*b^2*Sin[c + d*x] - 10*a*b*B*Sin[c + d*x] + 15*a^2*C*Sin[c + d*x]))/(15*a^3) + (2*A*Sec[c + d*x]^2*Tan[c +
d*x])/(5*a)))/d

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(3947\) vs. \(2(340)=680\).

Time = 26.00 (sec) , antiderivative size = 3948, normalized size of antiderivative = 10.61

method result size
parts \(\text {Expression too large to display}\) \(3948\)
default \(\text {Expression too large to display}\) \(4201\)

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15*A/d/a^3*(-3*a^3*cos(d*x+c)*sin(d*x+c)-8*b^3*cos(d*x+c)^3*sin(d*x+c)+4*a*b^2*cos(d*x+c)^3*sin(d*x+c)+a^2*
b*cos(d*x+c)^2*sin(d*x+c)-4*a*b^2*cos(d*x+c)^2*sin(d*x+c)+a^2*b*cos(d*x+c)*sin(d*x+c)-9*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/
2))*a^3*cos(d*x+c)^2-8*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Ellip
ticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^2+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)
*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)
^2+8*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-cs
c(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-9*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c)
)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^2-8*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)
/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-3*a^3*sin(d*x+c)-8*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c
))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^4+18*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)
/(a+b))^(1/2))*a^3*cos(d*x+c)^3+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^
(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^4+8*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b
^2*cos(d*x+c)^4-9*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(
cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^4-8*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a
+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^4+
4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d
*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^3+16*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/
(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^3-18*(cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/
(a+b))^(1/2))*a^2*b*cos(d*x+c)^3-16*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c))
)^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^3-9*a^2*b*cos(d*x+c)^3*sin(d*x+
c)-9*a^3*cos(d*x+c)^2*sin(d*x+c)-18*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c))
)^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^3-16*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^
3*cos(d*x+c)^3+9*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(c
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2+9*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*
cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^4-9*(co
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c)
,(-(a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^4)/(1+cos(d*x+c))/(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(5/2)-2/3*B/d/a^2*(2
*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*
x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)^3+2*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)^3+EllipticF(cot(d*x+c)-
csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*a^2*cos(d*x+c)^3-2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos
(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^3+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b
)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)^
2+4*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)^2+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(
1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^2-4*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b
))^(1/2))*a*b*cos(d*x+c)^2+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)
*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b
)/(a+b))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+
c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(
d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+c
os(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)-a*b*cos(d*x+c)^2*sin(d*
x+c)+2*b^2*cos(d*x+c)^2*sin(d*x+c)-a^2*cos(d*x+c)*sin(d*x+c)+a*b*cos(d*x+c)*sin(d*x+c)-a^2*sin(d*x+c))/(1+cos(
d*x+c))/(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2)-2*C/d/a*(-(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(
d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-
b)/(a+b))^(1/2))*a+(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))
^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+(-(1-cos(d*x+c))^2*c
sc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*Ellip
ticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b+(1-cos(d*x+c))^3*a*csc(d*x+c)^3-(1-cos(d*x+c))^3*b*csc(d*x+
c)^3+a*(-cot(d*x+c)+csc(d*x+c))+b*(-cot(d*x+c)+csc(d*x+c)))*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))
^2*csc(d*x+c)^2+a+b)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/(a*(1-cos(d*x+
c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/(-((1-cos(d*x+c))^2*
csc(d*x+c)^2-1)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(3/2)

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b*cos(d*x + c)^5
 + a*cos(d*x + c)^4), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(a + b*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(a + b*cos(c + d*x))^(1/2)), x)